

Shiang-Yu Wang<sup>a</sup>, Hong-Shi Ling<sup>b</sup>, Min-Cheng Lo<sup>b</sup>, Chien-Ping Lee<sup>b</sup>
<sup>a</sup>Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan
<sup>b</sup>Department of Electronic Engineering, National Chiao Tung Univ, Taiwan





Shiang-Yu Wang<sup>a</sup>, Hong-Shi Ling<sup>b</sup>, Min-Cheng Lo<sup>b</sup>, Chien-Ping Lee<sup>b</sup>

alnstitute of Astronomy and Astrophysics, Academia Sinica, Taiwan.

bDepartment of Electronic Engineering, National Chiao Tung Univ, Taiwan.

## Progress of QDIPs

- High operating temperature demonstrated
  - In(Ga)As /GaAs with AlGaAs barriers
    - S. Chakrabarti, et.al. IEEE PTL, 16, 1361, 2004
    - P. Bhattacharya, et. al. APL., 86, 191106, 2005
  - InAs/InGaAs/GaAs DWELL
    - X. Lu, et.al. APL. 91, 051115, 2007.
    - H. Lim, et. al. APL. 90, 131112, 2007.
- QDIPs arrays:
  - 640x480 arrays demonstrated
    - DWELL QDIPs
    - Gunapala et. al. Infrared Phys. & Tech 50, 149, 2007





## Thin AlGaAs layers

- The dark current is greatly reduced with 25 A
   AlGaAs layer
- no obvious peak wavelength shift





Details in S. Y. Wang et.al APL 78, 1023, 2001

## Thin AlGaAs layers

 The QE is enhanced by 10 times with an additional thin AlGaAs layer on QDs in DWELL structure

• D\* at 77K is 3.5 x 10<sup>10</sup> cm Hz<sup>0.5</sup> / W (@ -0.9V, 8μm)





Details in Ling et.al APL 92, 193506, 2008 and talk in this conference

## QD states



material change adjadent to the QD will to thange the states easily Photon energy (eV)

# InAs/GaAs QDIP with thin AlGaAs



- 4 samples
- X= 5, 7, 11 nm & control sample



 $D^* \sim 4.1 \times 10^{10} \text{ cmHz}^{0.5}/\text{W } @77\text{K}$ 

## DWELL QDIP with thin AlGaAs

- QDIPs with 10 layers of different QD structures are compared
- All QD are of the similar sizes and density
- All QDs are modulation doped to around 1e<sup>-</sup>/QD
- 2.5 nm Al<sub>0.3</sub>Ga<sub>0.7</sub>As layers were used







sample A

sample B

sample C

#### QD states





- Ground state energy increases with the confinement effect
- Separation of state energy (detection wavelength) increases with the confinement

QE with normal incident light



- The better confinement enhances the QE
- The higher excited state energy also improves
  - $-\Delta E_{\rm exc}$  ~ 80 meV

Polarization v.s. response





- The polarization response depends on both in plane and z direction confinement
- Transition to QD states also helps the TE absorption

### Transport properties



- Increase of dark current << exp(60meV/kT)</li>
- The reduction of the InGaAs thickness increase the gain

## Overall performance

- The device with higher excited state operate at lower bias
- The devices with AlGaAs layer show higher D\*





# Intermixing effect



- Stronger intermixing with GaAs layers.
- InGaAs QDs are formed
- When Al content > 0.2 intermixing and confinement effects balanced

# Al<sub>0.2</sub>Ga<sub>0.8</sub>As v.s Al<sub>0.3</sub>Ga<sub>0.7</sub>As





- Both gain and dark current are higher with Al<sub>0.2</sub>Ga<sub>0.8</sub>As barriers
- Higher barrier still enhances the performance

## Summary

- Thin layer of high band gap material could generates dramatic changes for QDIPs
- The higher lateral confinement could enhance the QE especially the normal incident absorption.
- The parameters of the AlGaAs layer provide additional flexibilities
- Different structures are possible for different application requirements









